Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts.

Our current understanding of how DNA is packed in the nucleus is most accurate at the fine scale of individual nucleosomes and at the large scale of chromosome territories. However, accurate modeling of DNA architecture at the intermediate scale of ∼50 kb-10 Mb is crucial for identifying functional interactions among regulatory elements and their target promoters. We describe a method, Fit-Hi-C...

متن کامل

Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages

We have analyzed publicly available K562 Hi-C data, which enable genome-wide unbiased capturing of chromatin interactions, using a Mixture Poisson Regression Model and a power-law decay background to define a highly specific set of interacting genomic regions. We integrated multiple ENCODE Consortium resources with the Hi-C data, using DNase-seq data and ChIP-seq data for 45 transcription facto...

متن کامل

Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors

The sequence of a genome is insufficient to understand all genomic processes carried out in the cell nucleus. To achieve this, the knowledge of its three-dimensional architecture is necessary. Advances in genomic technologies and the development of new analytical methods, such as Chromosome Conformation Capture (3C) and its derivatives, provide unprecedented insights in the spatial organization...

متن کامل

An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data

Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts-for example, distance-dependent random polymer ligation and GC content and mappability bias-and model zero inflation and overdispersion. App...

متن کامل

The sequencing bias relaxed characteristics of Hi-C derived data and implications for chromatin 3D modeling

The 3D chromatin structure modeling by chromatin interactions derived from Hi-C experiments is significantly challenged by the intrinsic sequencing biases in these experiments. Conventional modeling methods only focus on the bias among different chromatin regions within the same experiment but neglect the bias arising from different experimental sequencing depth. We now show that the regional i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genome Research

سال: 2014

ISSN: 1088-9051

DOI: 10.1101/gr.160374.113